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ABSTRACT

Recent developments in the fields of gas core hydrodynamics, heat
transfer, and neutronics indicate that gas core nuclear rockets may be
feasible from the point of view of basic principles. Based on perform-
ance predictions using these results, mission analyses indicate that gas
core nuclear rockets may have the potential for reducing the initial weight
in orbit of manned interplanetary vehicles by a factor of 5 when compared
to the best chemical rocket systems. In addition, there is a potential
for reducing total trip times from 450 to 500 days for chemical systems
to 250 to 300 days for gas core systems. The possibility of demon-
strating the feasibility of gas core nuclear rocket engines by means of a
logical series of experiments of increasing difficulty that ends with ground
tests of full scale gas core reactors is considered. It appears to be fea-
sible to devise such a series of experiments and the facilities to go along
with them. The facility requirements consist chiefly of additions to or
modifications of existing facilities.
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COMMENTS ON THE FEASIBILITY OF DEVELOPING GAS

CORE NUCLEAR REACTORS

by Frank E. Rom

Lewis Research Center

SUMMARY

Recent developments in the fields of gas core hydrodynamics, heat
transfer, and neutronics 1 that gas core nuclear rockets may be feasible
from the point of view of basic principles. Specific impulse is expected
to be in the range of 1500 to 2500 seconds for thrust levels of the order
of 100, 000 to 1, 000,000 pounds of thrust and powerplant weights in the
range of 100,000 to 300,000 pounds. The ratio of hydrogen to uranium
mass flow rates may be of the order of 100 to 1. Based on performance
predictions using these results, mission analyses indicate that gas cores
have the potential for reducing the initial weight in orbit of manned inter-
planetary vehicles by a factor of 5 when compared to the best chemical
rocket systems. In addition, there is a potential for reducing total trip
times from 450 to 500 days for chemical systems to 250 to 300 days for
gas core systems. Calculations show that there is no pollution or radi-
ation hazard produced by the release of all the fission products and un-
fissioned uranium from gas cores into space.

Because of these results, it is timely to consider whether a logical,
feasible, and economically reasonable development program that could
produce a flyable man-rated gas core nuclear rocket engine is conceiv-

able. A major goal in such a program is a series of experiments of
increasing difficulty that ends up with the ground test of full scale gas
core reactors. Such a series of experiments can be envisioned. Each
experiment significantly increases the confidence that gas core engines
are feasible. The first steps are small, yet significant enough so that
if they are successful, they will give the confidence necessary to under-
take the next step. The facilities required are additions or modifications
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to existing facilities. The costs are, therefore, expected to be rea-

sonable. A full-scale gas core engine test facility, for example, may

require only the addition of a scrubber and a stack to an existing nuclear

rocket test facility at the Nuclear Rocket Development Station at

Jackass Flats, Nevada.

It is concluded that it is possible to formulate a logical series of

experiments that would permit the proving of the feasibility of a gas

core nuclear rocket by means of final full scale gas core reactor ground

tests. This conclusion assumes, of course, that good performance con-

tinues to materialize at each step in the program.

INTRODUCTION

Recent developments in the fields of gas core hydrodynamics, heat

transfer, and neutronics indicate that gas core nuclear rockets may be

feasible from the point of view of basic principles. Based on perform-

ance predictions using these results, mission analyses indicate that gas

cores will reduce the initial weight in orbit of manned interplanetary

vehicles by a factor of 5 when compared to chemical systems. In addi-

tion, there is a potential for reducing total trip times from 450 to 500

days for chemical systems to 250 to 300 days for gas core systems. No

particular space hazards or pollution problems are anticipated by allowing

the fission products and unburned uranium to escape to space. These

favorable results indicate the need to more seriously consider the gas

core nuclear rocket as a possible space propulsion system.

The question of whether the feasibility of gas cores can be firmly

established with a logical series of experiments ending with full scale

ground tests is a pertinent one. This report reviews recent important

gas core developments and outlines steps required to establish feasibility

of a gas core space propulsion reactor.
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RECENT DEVELOPMENTS AND BACKGROUND

Lewis Research Center through in-house and contracted efforts has
been conducting basic work in the fields of hydrodynamics (refs. 1 to 26),

gaseous radiant heat transfer (refs. 27 to 56), and neutronics (refs. 57
to 69), as well as system studies (refs. 70 to 77) since 1953 when the first
plausible concept of a gas core nuclear rocket was proposed. There was

very little knowledge in each of these three basic fields that could be
applied to determining the feasibility of any gas core concept. During
the course of establishing the basic technology, several concepts were
conceived and dropped. The coaxial-flow concept originally conceived

about 1960 (ref. 6) finally evolved into a porous-wall spherical gas core
reactor concept (refs. 25 and 26) that is referred to herein as the Lewis

gas core concept. Based on recent data, this is a concept that may be
feasible. It appears as if it might be possible to maintain a sufficiently

large volume of uranium vapor within a cavity reactor to assure criti-
cality while hydrogen flows through the cavity with a flow rate that is

100 times that of the uranium. Calculations indicate that the heat from
the fissioning uranium can be transferred to seeded hydrogen by thermal

radiation while limiting the heat flux to the cavity walls so that wall
cooling is not a problem. The rate of seed material addition required

to enable the hydrogen to absorb the thermal radiation and to protect the

walls is of the order of 0.1 to 1.0 percent of the hydrogen flow rate.
This amount of seed has a negligible effect on specific impulse.

Lewis Gas Core Concept

A schematic drawing showing the principal features of this concept is
shown in figure 1. The proposed reactor is basically spherical and is
composed of an outer pressure vessel, an outer cold-circulating deuterium

oxide (D2 0) zone, a beryllium oxide (BeO) zone that is regeneratively
cooled by the hydrogen propellant, an inner second-pass D2 0 circulating

zone, and finally a porous or slotted cavity liner. The D 2 0 moderator is
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pumped first through the outer region, then through the inner region.

The D 2 0 is collected in a toroidal header from which it is passed through

a heat exchanger where it is regeneratively cooled by the incoming cold

hydrogen.

The hydrogen is pumped to a pressure of 500 to 1000 atmospheres

by means of a turbopump operated by hydrogen bled from an intermediate

station in the propellant circuit. After the D2 0 is cooled in the regen-

erative heat exchanger, the hydrogen is ducted to a plenum at the down-

stream end of the reactor. Most of the hydrogen then flows through pas-

sages within the BeO region for cooling purposes. (Whatever gamma

and neutron heating is not picked up in the inner region of D2 0 is picked

up by the BeO.) The hydrogen then is ducted into the spherical plenum

behind a porous or slotted wall. Appropriate seed particles which are

about the size of smoke particles are introduced into the hydrogen as it

enters this plenum region. The seeded hydrogen then flows through the

porous or slotted wall. By properly designing the shape of the porous

wall and by proper injection and distribution of the hydrogen flow through

this wall, a relatively stagnant nonrecirculating central region forms

within the cavity. The cavity is about 10 feet in diameter. The central

fuel region occupies about one-half of the cavity volume.

Uranium metal is injected into this region. It vaporizes and rises

to temperatures sufficient to thermally radiate the energy that is gener-

ated by the fissioning uranium. A proposed fuel injection technique

consists of pushing a rod of solid uranium metal through a cadmium

shielded pipe that penetrates the moderator. As it enters the cavity

the uranium instantly vaporizes and rises in temperature to about

100,0000 R. Reactor startup could be achieved by first establishing

the hydrogen flow. Next uranium particles would be blown into the dead

cavity region to achieve nuclear criticality. The power would then be

increased to a level sufficient to vaporize the incoming uranium rod.

The seeded hydrogen is heated solely by absorbing the thermal

radiation from the fissioning uranium fireball. The cavity walls re-

ceive only a small fraction of a percent of the thermal radiation from

the fireball. This is accomplished by introducing about 1/10 of 1 per-
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cent by weight of a seeding material like graphite particles into the
hydrogen. This same technique is used in the nozzle region to reduce
the hydrogen radiation heat load and the hydrogen temperature near the
nozzle wall to tolerable levels. Seed concentrations of about 1 percent
are required here. Figure 1 shows that some cold hydrogen can be in-
troduced through the nozzle walls directly from the plenum at the down-
stream end of the engine if it is required.

The weight of the powerplant to produce 200, 000 pounds of thrust
is estimated to be of the order of 200, 000 pounds (ref. 24). Increasing
the thrust level to 1 million pounds would increase the weight to about
300, 000 pounds. The specific impulse can range from 1500 to 2500 sec-
onds depending on the operating outlet gas temperature. At 1500 sec-
onds the average outlet gas temperature is about 10, 0000 R, and at
2500 seconds the average outlet gas temperature is about 15, 0000 R.
The reactor power level for 200, 000 pounds of thrust is about 10,000
megawatts at a specific impulse of 2000 seconds. Based on recent ex-
perimental data the ratio of hydrogen to uranium flow is expected to be
about 100 to 1 (refs. 25 and 26).

Recent Experimental Results

Experimental data have been obtained on isothermal gas core re-
actor flow mockups, hot-flow mockups which use radiofrequency (RF)
induction directly coupled with flowing gases to simulate nuclear heat-
ing, and on full-scale nuclear mockups to obtain neutronic critical ex-
periment data. This section briefly describes the most recent experi-
mental results and the possible implications of these results.

Cold-flow experiments. - A two-dimensional mockup was made
of the Lewis gas core concept to determine whether a large dead region
could be maintained in the center of the cavity while maintaining a high
ratio of outer to inner flow (refs. 25 and 26). Figure 2 shows the test
section. The expansion of the uranium is simulated in this isothermal
test by means of a showerhead arrangement through which smoky air
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simulating the uranium is flowed. The outer walls are made of strips of
brass sheet punched with 1/64-inch holes spaced on 1/32-inch centers.

The test section is about 10 inches across the cavity and about 6 inches
deep. The nozzle wall contour was adjusted to provide a desirable non-

recirculating flow pattern within the cavity. Figure 3 shows the test

section operating with a flow ratio of 100 to 1. The range of the instru-
mentation did not permit measurements at higher flow ratios. The

smoke concentration does not change rapidly with time even when the
inner flow is stopped completely. It is suspected that higher flow ratios

may be possible through geometry changes of the test section. Fig-
ure 4 shows the measured smoke concentration profiles from a run with
a flow ratio of 100. The volume occupied by the stagnant zone is about
40 percent of the cavity volume, and the density of the smoke is, on the

average, about 50 percent of the density at injection. In a real reactor
this would require an operating pressure of about 500 to 1000 atmospheres

to provide sufficient uranium for nuclear criticality.

United Aircraft Research Laboratories under contract to the joint
AEC/NASA Space Nuclear Propulsion Office has been carrying out ex-

periments on a pure coaxial-flow system shown in figure 5 (ref. 12).
Figures 6(a) and (b) show the flow pattern with mass flow ratios of 30

and 55, respectively. The lower value is about as high as has been at-

tainable while maintaining a central stagnant zone. It is clear that at
the higher value of 55 the stagnant zone vanishes due to strong recircu-

lating flow patterns. When a thick high-porosity material was placed

across the inlet face, it was not possible to produce recirculation cells
that caused the disappearance of the central dead region, even for much
higher flow ratios than previously observed. This is shown by the photo-

graphs of the flow in figures 6(c), (d), and (e) for flow ratios of 30, 80,

and 130, respectively. Experiments were run at flow ratios of up to
300 with similar results. It was beyond the measuring capability of the

experimental apparatus to obtain quantitative data for higher mass flow

ratios.
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The results of these isothermal experiments at Lewis and at United

Aircraft Corporation indicate that flow ratios of about one hundred may be

possible for gas core cavity reactors.
Hot-flow tests. - Lewis has conducted nonisothermal tests using up

to 1 megawatt of RF power at the TAFA Division of the Humphreys Corp-

oration (refs. 54 to 56). About 600 kilowatts of heat is generated directly
within the flowing gas to simulate nuclear fission heating. An RF field

produced by a coil surrounding the test section couples with the ionized

flowing gas. Figure 7 shows a 1 megawatt RF test set-up. In these tests

it has been observed that heating of the inner flowing gas eliminates re-
circulation. Recently, for the first time, measurements were made of

the concentration profiles of the gases directly in the RF discharge within

the inner flowing gas. Figure 8 shows the profiles with and without heating

to illustrate the calming effect of the heat addition. Notice, for example,

the difference in the shape of the 0. 5 concentration profile when heat is

added to the flow. This experiment leads to the belief that mixing may be

greatly reduced by heat addition to the central gas. This is, of course,

of great significance in a real gas core engine where the ratio of hydrogen
to uranium flow would be further increased because of the reduced mixing

resulting from the steep temperature gradients accompanying the enormous

heat addition in the central region.

Critical experiments. - In the field of gas core neutronics, extensive

critical experiments have been carried out on a full-scale gas core cavity

reactor mockup (refs. 62 to 69) shown in figure 9. This experimental gas
core cavity is 6 feet in diameter and 4 feet long. It is surrounded by a

3-foot-thick reflector-moderator region of heavy water on all sides. The

outer diameter of the reactor is 12 feet and it is 10 feet long. Generally,

uranium foils 1 mil thick are distributed in the cavity region to simulate

the gaseous uranium. (Experiments were also run in which uranium hexa-

fluoride gas was used to give a more accurate representation of gaseous

uranium.) The fuel was distributed within the cavity in many ways to sim-

ulate the shape, size, and concentration distribution of fuel as it might

occur in real reactor operation. The effects of hydrogen propellant be-

tween the fuel zone and the cavity wall, and also mixed with fuel, have
been investigated. The effect of lumpy fuel distributions such as might
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occur when the coflowing hydrogen and uranium gases pass through the
cavity has been investigated.

The experiments have yielded a good understanding of gaseous
cavity reactors that was impossible to obtain by analysis. The body of
data now available constitutes a challenge to the analyst to provide theo-
retical solutions that can be used within the limitations of today's com-
puters. In essence the critical experiment is used as an analog com-

1puter. In 22 years of operation, over 600 configurations have been
investigated. All of our estimates of critical mass and reactivity effects
of real gas core reactors are now based on these experimental data.
These estimates are the most reliable ones available.

Missions

A few mission performance calculations were made in order to
determine whether a gas core with the characteristics described pre-
viously would have the potential for a significant improvement over
chemical or solid core nuclear rocket performance. The mission for
this calculation consisted of a 420-day manned Mars landing mission
in 1980 as described in reference 77. Gas core performance was
compared to solid core performance. The following engine charac-
teristics were used. They aretical of the first generation solid
core nuclear rocket and anticipated-performance for a gas core engine.
The solid core rocket may eventually achieve a specific impulse of
925 seconds and its weight may be lower than indicated in the table.
It is not expected that the general conclusions drawn from an analysis
made using these assumptions will be significantly affected should the
solid core potential materialize.
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Characteristic Solid core Gas core

nuclear nuclear

rocket rocket

Specific impulse, sec 825 2500

Thrust, lb 75,000 100, 000 to

1,000,000

iUght, lb 25,000 100,000 to
n IN

The solid core nuclear rocket initial vehicle weight in orbit is

2.2 million pounds. For an engine weight of 200, 000 pounds, the gas

core nuclear rocket initial vehicle weight in orbits is 800, 000 pounds,

or about 1/3 the weight of the solid core system. Inasmuch as solid

core nuclear rockets for manned Mars missions require an initial

weight in orbit about 1/3 to 1/2 hat for chemical rockets (ref. 77),

the gas core requires only 1-/4 to 1/6 the initial weight of a chemical

system. Some of the reduction in initial weight can be traded for a

reduction in trip time by the gas core rocket. Even for trip times as

low as 250 to 300 days, the initial weight in orbit of the gas core will be

about 1/2 that of advanced chemical systems for 450 to 500 days trip

time.

In all the cases above, aerodynamic braking was used for the Earth

return maneuver. If the gas core were used for this maneuver, the gas

core engine, the crew quarters, the life-support equipment, and the

final tankage would be recovered for possible reuse. In this case the

initial vehicle weight in orbit for the gas core would be about 1. 3 million

pounds or about 1/2 the weight of the solid core nuclear rocket which

uses aerodynamic braking. The solid core nuclear rocket system uses

a total of six or seven engines in this mission; the gas core uses only

one, which can be recovered. These potential advantages of the gas

core, simplicity and recoverability, deserve further examination.
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Potential Radiation Hazards from Gas Core Plume

The exhausting of all fission products and unburned fissionable ma-

terial into space by the gas core rocket may give concern because of a

potential space pollution or radiation hazard problem. Calculations have

been made that show that the exhaust plume containing all the fission

products expands so rapidly that in 0. 01 second after the gas leaves the

nozzle the dose from fission products to a person directly in the plume

would be less than the normal background dose from cosmic and solar

sources. In 1 hour after shutdown, the concentration of all exhaust par-

ticles including hydrogen, uranium, and fission fragments would be down

to the normal particle concentration in interplanetary space.

There are two other sources of radiation hazards from the exhaust

plume that might affect the personnel aboard the gas core powered ve-

hicle. One is the direct radiation to the crew compartment from the
"radioactive exhaust jet" plume. The other is radiation to the crew

compartment from fission fragments that may diffuse forward from the

plume and deposit on the outside surface of the vehicle. Preliminary

estimates indicate that these problems are negligible, but studies are

being made to verify this conclusion.

The potential effect of trapping ionized radioactive or high-energy

particles in the Van Allen belt must be mentioned. The fission products

produced by a gas core in a typical 20 minute earth departure operation

are about equivalent to those produced by a 3-kiloton weapon burst. In-

asmuch as the time that a gas core would exhaust fission products while

in the high intensity portions of the Van Allen belt would be only a small

fraction of its operating time, Van Allen trapping is considered to be an

insignificant problem.

DEMONSTRATION OF GAS CORE FEASIBILITLY

The work in the fields of neutronics, hydrodynamics, and gaseous

radiant heat transfer has shown that the Lewis gas core concept may be



basically feasible. The anticipated performance of this engine yields a

substantial improvement in manned interplanetary space mission capa-
bility. The feasibility studies that have been carried out thus far have

neglected the mutual interactions between neutronics, hydrodynamics, and
heat transfer because of the difficulty in carrying out work in each of the

areas. There can be no question that mutual interactions between neu-

tronics, hydrodynamics, and heat transfer are first-order effects in a

gas core reactor. Even though the work in each of these separate fields
is generating very important new knowledge in its own right, and is now
sufficiently advanced to predict possible gas core feasibility, it is not

likely that further work which neglects interactions will greatly aid in
determining whether or not a gas core may be practical as a propulsion
device. The next major advances toward determining the practicality of

gas cores will therefore come as a result of attempting to determine the
interactions between the three basic areas of investigation. No mean-
ingful gas core reactor dynamics or control studies can be done until

these interactions become known. Neither will it be possible to predict

achievable ratios of hydrogen to uranium mass flow until the mutual

effects are understood.

The steps required to show feasibility of a gas core are outlined in
figure 10. Each step begins with relatively simple extensions of present

work that provides the confidence required to advance to the next step if
the results continue to be promising. The steps include work that is

already completed or underway and continues into the future, to when a
full-scale engine designed for flight is first tested. The diagram shows

the start in 1953 when the first Lewis gas core concept was conceived.
Because of the lack of basic data in existence at that time, the program

was split into three separate basic fields - neutronics, hydrodynamics,

and heat transfer. Currently, the cold static critical experiments, iso-
thermal hydrodynamic analyses and experiments, and heat-transfer
analyses and experiments in each of these fields indicate that no major
change is likely to occur that would alter the conclusion that a gas core
may be feasible from the point of view of basic principles.

The next step requires experiments that combine fields. The fig-

ure shows the possibility of combining neutronics and hydrodynamics in
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a cold-flowing-gas critical experiment. Also shown is a parallel step

that combines hydrodynamics and heat transfer in RF-heated-flowing-

gas experiments. Both experiments are relatively minor extensions of

the work now accomplished or underway in each of the fields that they

combine. They use basic technology that has been demonstrated by

previous work. Each of these steps is discussed in more detail in the

following sections of the report.

The cold-flowing-gas critical experiment and hot-flowing-gas ex-

periments should lead to small-scale fission-heated tests to be operated

in a high-flux test reactor. A test reactor that would be required to

carry out these experiments is described in a later section. The small-

scale fission-heated tests lead to full-scale gas core tests that in turn,

define a flight propulsion gas core engine for ground testing.

Cold-Flow Critical Experiments

The purpose of cold-flow critical experiments is to determine the

interaction between the hydrodynamics and neutronics of a gas core

reactor. It should provide information on the controllability, dynamics,

and stability of gas cores. The effect of temperature and heat transfer

cannot be included in this reactor test because the reactor would have to

be operated at high power levels. This, of course, would greatly affect

the complexity and cost and would make such an experiment a very large

premature step. The cold-flow critical experiment is a necessary low-

risk forerunner to a power test.

The cold-flow critical experiments can be considered to be a logical

extension of the cold static critical experiment program that is now in

progress at the AEC National Reactor Testing Station. A schematic dia-

gram of one concept for this proposed experiment (ref. 78) is shown in

figure 11. The reactor is similar to that used in the cold static exper-

iments now underway, in that the reactor is basically a large tank of

D2 0 moderator. The cavity in this experiment is designed according

to the principles that have been learned from the most promising cold-

flow hydrodynamic experiments. The fuel is uranium hexafluoride (UF 6 )
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and the propellant some gas such as dry nitrogen or oxygen.
The UF 6 is fed into the system (as it was in the cold static gas

core critical experiments) by heating liquid UF 6 to a temperature
of about 2300 F and a pressure of 35 psia. The cavity diameter is
about 40 inches. The UF 6 is fed into the dead region of the cavity
by an injection system which would be defined by cold-flow hydro-
dynamic experiments. The propellant gas is fed from a circulating
pump to a plenum region behind the appropriately designed porous
or slotted wall in the cavity. The design of the wall would also be
determined by the cold-flow hydrodynamic experiments.

The resulting mixture of UF 6 and propellant gas in this design
is ducted to NaF absorber beds that remove the UF 6 from the ex-
haust gas mixture. The propellant simulating gas is pumped back
to the reactor. A run of about 10 to 20 minutes would be required
to gather the necessary data. After each run the mixture of pro-
pellant gas and UF 6 is passed through a cold trap to condense out
the UF 6 . The UF 6 is then recovered by heating the trap and re-
condensing the UF 6 in the UF 6 supply system. The system would
then be ready for another run. Other techniques for removal and
recovery of the UF 6 from the flowing gases leaving the experiment
are being considered. One such scheme uses a cold-trap system
of a previously proven design that has been used in handling UF 6 .
Another uses an organic compound that is capable of absorbing
UF 6 gas from a mixture leaving the reactor. The total amount of
UF 6 involved in any of these operations is about 60 kilograms.
Several runs per week can be made with these systems.

The operating technique proposed for this experiment is de-
signed so that all operations are conducted in a safe controllable
fashion. The first phase of the experiment would be to carry out a
complete set of hydrodynamic and system experiments with UF 6
containing natural uranium. The core region is well instrumented
in this phase so that the size, shape, and density of the fuel region
will be known over the entire operating range of all variables. The
second-phase experiment uses fully enriched UF 6, but a dividing
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wall separates the entire fuel region from the flowing propellant region.

The shape and size of the volume contained by this wall is determined

from the cold-flow tests. These experiments with the dividing wall will

be used to determine neutronic characteristics independent of flow. The

third, fourth and each succeeding phase will be tests with more and more

of dividing wall removed. The amount that can safely be removed in each

step is determined from the data for each preceding experiment. Finally,

the dividing wall will be completely removed, and the operation of a cold

gas core flowing reactor will be demonstrated.

A feasibility study of carrying out a cold flow critical experiment

(ref. 78) indicates that such an experiment is a reasonable undertaking

in that it could be safely and economically carried out. It would be an

important step forward toward an operating gas core reactor. It would

demonstrate that a reactor with gaseous fuel restrained by hydrodynamic

means only, could be fully controlled during startup and steady-state,

low-power, isothermal operation.

Hot-Flow Experiments

The purpose of the hot-flow RF experiments is to determine the

effect of heat addition and large temperature gradients on the mixing

between the coaxially flowing gases. Radiofrequency power can be

used to inductively heat the central flowing gas that simulates hot

fissioning uranium gas. The RF experiments that have been conducted

at the TAFA Division of the Humphreys Corporation (refs. 54 to 56)

have proven the feasibility of heating gases inductively at power levels

up to 1 megawatt. Data have been obtained from idealized coaxial-

flow experiments where the central gas was argon and the surrounding

propellant gas was hydrogen or air.

Figure 12 shows one of the several torch designs tested at a power

level of 500 kilowatts. The cylindrical chamber below the torch is the

flow header assembly that allows simultaneous but independent variation

of several gas flow regions. The header also provides for cooling
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water distribution. The RF coils are about 6 inches in diameter for this

particular test. The plasma does not contact the walls of the torch.

The next logical step is to carry out experiments with flow geometries
that are representative of the kind that in isothermal tests produce mass

ratios of outer to inner flow greater than 100. It is also desirable to

provide in these experiments an injection system (see fig. 13) that would

simulate a real engine injection system. In a real engine, a typical in-

jection system would utilize a solid rod of uranium that is fed into the hot

fissioning uranium gas. This might be simulated in an RF experiment by

feeding a rod of graphite into the plasma. The rod could be loaded with

metallic or other atoms as necessary to obtain the desired optical prop-

erties of the plasma.

In the experiment, the walls that surround the plasma and its sur-

rounding gas would be fabricated of porous tubes that provide flow pat-

terns as obtained in the isothermal work. Concentration measurements

would be made directly within the plasma by a technique that was devel-

oped and successfully used in work that is now underway at TAFA

(refs. 54 to 56). The injection end of the experiment is designed to per-

mit rapid changes of injector configurations. This is an area which has

not been investigated in isothermal tests. Experience gained in consumable

electrode arc furnaces is directly related to this work and can be used as

a guide. Upon successful completion of these tests, a 1-megawatt small-

scale (4-in. -diam) simulated gas core nuclear reactor engine would have

been demonstrated.

A question can be raised as to whether RF heating is a good way to
simulate nuclear heating, because the electrical and magnetic forces

produced by the interaction of the plasma with the RF field might be of

concern. Calculations have shown that RF heating in the frequency

range of about 1 megacycle with the gases at 1-atmosphere pressure

should closely simulate nuclear heating. During the course of one cycle,

the electrons in the plasma move, at the very maximum, a distance of

only 2 millimeters. When compared to the dimensions of the plasma (30

to 100 mm), the oscillations of the electrons produced by the electrical

and magnetic forces is negligible. Of course, the movement of the ions
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would be orders of magnitude less than the electrons and would be com-
pletely insignificant. In addition the potential magnetic pressures built

up by the magnetic fields are small compared to pressures that exist in
the system. It appears as if RF inductive heating is a good way to sim-
ulate nuclear heating in a gas.

It may be feasible to conduct RF experiments at power levels higher
than 1 megawatt. Higher power levels would be required to simulate
gas core operation at gas blackbody radiation temperatures required for
high-thrust full-scale gas core reactors (20, 0000 R). A 4-inch model
with a 2-inch-diameter plasma zone would require an RF power supply
of about 15 megawatts for an effective blackbody radiating temperature
of at least 20, 0000 R. A 20-inch model with a 10-inch-diameter fuel
zone would require an RF power supply of about this same size for
operation at an effective radiating temperature of at least 10,0000 R.
For a radiating temperature of over 20, 0000 R, the required power
for the 20-inch test would be considerably more than 15 megawatts.

Commercially available RF power supplies are now operating at power
levels in the range of 1 to 2 megawatts. The construction of units in
the range of 15 megawatts appears feasible because they would be
scaled-up versions of the up 1- to 2-megawatt units. The major cost
item for such an experiment would be the power supply. If further tests

on RF heating show that high power can be induced in gas with induction
units operating in the kilocycle rather than the megacycle frequency
range, the cost of carrying out the high power tests could be greatly
reduced. It is, therefore, important to do exploratory experiments
designed to determine how low a frequency can be used successfully.
(Frequencies as low as 60 Hz have been used to inductively heat large
steel pieces. The plasmas that have been generated thus far in our
RF work have behaved electrically as steel. Steel is used, for example,
in place of plasma to tune up the RF power supplies.) The use of low-
frequency power for induction heating would permit much larger scale,
higher temperature tests than proposed above for the same cost.
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In-Pile Test of Gas Core Models

It is not possible to carry out a small-scale, gas core, in-pile test
in conventional MTR-type test reactors such as the Plum Brook Reactor,
MTR, ETR, GETR, or ORR. Uranium would be used in these tests as
the fuel material to produce fission heating. The operating temperature
of the uranium fuel region must be above the boiling point so that the
uranium remains gaseous. At a pressure of 1000 psi, the boiling point
of uranium is about 11, 0000 R. If the edge temperature of the fuel
plasma is set at 11, 0000 R, the radiant heat loss (hence, the operating
power) can be computed. The result of this calculation is shown by the
dashed line in figure 14. A 2-inch-diameter sphere of uranium vapor
with an edge temperature of 11, 000 R will radiate 4--megawatts of
power. The number of uranium atoms per unit volume can be com-
puted for any desired pressure level. The flux level required to gen-
erate the desired-1-megawatts can then be determined because the fuel
atom density and cross sections are known. For example, the required
thermal neutron flux for a 2-inch uranium gas sphere operating with
an edge temperature of 11, 0000 R at a pressure of 1200 psi is 5x1016 nv
(where n is the number of neutrons per unit volume and v is their
mean velocity). The highest flux available in conventional test reactor

space of sufficient volume is substantially less than 1015 nv; therefore,
a meaningful gas core experiment cannot be done in conventional test
reactors.

It appears to be feasible to design a test reactor system that would
produce a flux level of 1016 neutrons per square centimeter per second.
In order to achieve the highest flux per unit of reactor power, the non-
productive absorption of neutrons in the reactor system must be care-
fully minimized. This permits low concentrations of uranium to be used
in the power-producing part of the reactor system. The lower the volu-
metric concentration of uranium, the higher will be the flux required for
a given power. In addition, a flux trap can be used to amplify the flux
level in the test zone. A preliminary conceptual sketch of such a test
reactor is shown in figure 15. An annular reactor core about 40 inches
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high and about 62 inches in outer diameter, with an inner diameter of

about 30 inches is shown. The reactor is fabricated of aluminum fuel

plates similar to those of the conventional MTR reactors such as the

Plum Brook Reactor. The fuel loading, however, is reduced by a

factor of 15 less than PBR fuel. For the same power density, there-

fore, the flux level in this core would be about 15 times that for PBR.

This low fuel loading is made possible because D 2 0 is used as the reactor

coolant and because about 3 feet of D2 0 is used as a reflector outside

the core. The use of the 30-inch D2 0 island in the center of the core

will increase the flux level to greater than 1016 neutrons per square

centimeter per second by trapping. Reactor calculations indicate

that for a power of 920 megawatts the average flux level in the trap

will be 1016 neutrons per square centimeter per second.

Reactor cooling in this concept is by natural convection of high-

pressure (100 psi) D 2 0. The use of natural convection eliminates the

need for pumping large quantities of D 2 0. It also permits the D2 0 to

be completely contained in a tank about 12 feet in diameter and 10 feet

high. This tank has a vertical through-hole 30 inches in diameter into

which experiments can be inserted. The D 2 0 is cooled as it circulates

through a light-water steam generator. For a 1000-megawatt reactor,

about 1000 pounds per second of steam will be generated. A gravity-

fed 1-million-gallon water supply will permit the reactor to operate

for more than 2 hours. If continuous operation is desired, a light-

water pumping system and cooling tower must be provided. A facil-

ity such as this might be located at either the NRDS, Nevada, or

NRTS, Idaho.

The gas core model to be tested is installed in a 30-inch D 2 0-

filled test module that is inserted into the reactor test hole. The

propellant and fuel delivery systems, and any cooling system re-

quired, are considered to be a part of the test module. In fig-

ure 15 is shown a 20-inch gas core model with a 10-inch-diameter

fuel zone. The power level of the gas core test is 34 megawatts.

Its operating pressure is 1200 psi, and its effective blackbody radi-

ation temperature is over 11,000 R.
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The exhaust from the gas core test is cooled in a water spray

scrubber. The cooled gases and water vapor from the scrubber are

exhausted to the atmosphere through a suitable stack. The noble gas

fission products that escape to the atmosphere are of insignificant

consequence to off-site locations. The uranium that is diluted with

large quantities of water can be processed in existing fuel repro-

cessing plants for reclamation.

By further optimization it may be possible, with this basic con-

cept, to achieve flux levels higher than 1016 neutrons per square

centimeter per second.

Full-Scale Gas Core Test

A full-scale gas core reactor operating with a specific impulse

of about 2000 seconds and a thrust level of 200, 000 pounds has a
power level of 10, 000 megawatts and a chamber pressure of 500 at-

mospheres. The hydrogen flow rate is 100 pounds per second. The

uranium flow rate is of the order of 0. 1 to 1 pound per second. The

average enthalpy of the exhaust gas is 83,000 Btu per pound. This
corresponds to an average exhaust temperature of 11,5000 R. For

a 20-minute run, a total of 120, 000 pounds of hydrogen and from
120 to 1200 pounds of uranium would be required. There would be

about 140 grams of uranium fissioned, and therefore there would be

of the order of 140 grams of fission products generated. The total

amount of heat released would be about 1.2x1010 Btu. This cor-

responds to the latent heat of 1. 2x10 pounds (1. 5x10 6 gal) of water.
The rate of steam production, if the entire 10, 000 megawatts were

used to boil water, would be 10, 000 pounds per second.

A facility for testing a gas core reactor with the above operating
conditions could be designed as an addition to the nuclear rocket

test facilities at the Nuclear Rocket Development Station in Nevada.

Figure 16 shows schematically the equipment that would be required.

in addition to a test stand such as ETS-1. Liquid hydrogen at a flow

rate of about 100 pounds per second is required. The high-pressure
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pump required to produce the reactor operating pressure of 500 to

1000 atmospheres is considered to be a part of the gas core power-

plant to be tested. The exhaust from the engine is ducted into a water

spray scrubbing chamber. This scrubber is about 50 feet in diameter

and 100 to 150 feet long. The scrubber condenses out all the uranium

vapor and condensable fission products. The gaseous effluent from

the scrubber would be a mixture of hydrogen and steam. The noble

fission gases (about 20 grams of Xe and Kr) are entrained in this

effluent, which is discharged through a stack to the atmosphere. The

hydrogen flow leaving the stack is about 1/3 of the hydrogen flow of the

Phoebus test reactor. The effluent can be burned as it leaves the

stack, as in the case of the Phoebus tests. The advantage of burning

is that the hot plume gives better dilution and dispersion of the fission

products.

The noble gas fission products from this reactor test would give

a radiation dose 5 miles downwind about one-thousandth that permis-

sible to the general population. The calculation conservatively assumes

adverse weather conditions and that the release occurred at ground

level directly upwind of the measuring point.
If required, the steam-hydrogen mixture could be passed through

a particulate filter, a baffling system, or a separation system to

assure that no droplets of water are entrained in the effluent. The

droplets would allow condensable fission products to be released to the

atmosphere if they were not removed from the exhaust plume.

The water storage required for a 20-minute test run would be

about 3-million gallons. Half of this water is vaporized in the scrub-

ber, the remaining water is used to flush away and dilute the uranium

and condensable fission products. The mass ratio of water to uranium

that would produce criticality is 100 to 1. In the facility the ratio of

water to uranium for the worst case would be 10, 000 to 1. There is,

therefore, a factor of safety of at least 100 as far as a potential crit-

icality accident is concerned.
The water containing the uranium and fission products would be

cooled in a storage basin. This mixture would then be sent to a fuel
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reprocessing plant to recover the unburned fuel.

The operation of the gas core powerplant test and the additional

equipment required is therefore considered to be technically feasible.

The cost would probably be in the same ballpark as that for solid

core nuclear rocket engine testing.

CONCLUDING REMARKS

Recent experiments in the fields of gas core hydrodynamics, heat

transfer, and neutronics indicate that gas core nuclear rockets may be

feasible from the point of view of basic principles.

Mission analyses show that gas core nuclear rockets wil reduce

the initial weight in orbit of manned interplanetary vehicles by a factor

of 5 when compared to advanced chemical systems and by a factor of

2 when compared to solid core nuclear rockets. In addition, there is

a potential for reducing trip times from 450 to 500 days for chemical

and solid core nuclear rocket systems to 250 to 300 days for gas core

systems.

Calculations have shown that there is an insignificant pollution or

radiation hazard produced by the release of all the fission products and

unfissioned uranium from gas cores into space.

In order to justify continuing work on gas core reactors, it is nec-

essary to determine whether it is possible to devise a series of exper-

iments that will give assurance that gas core reactors are feasible.

The feasibility must be determined with sufficient certainty to warrant

the eventual construction and test of full-scale gas core reactors. It

is also necessary to determine whether a reasonable technique can be

conceived to permit development of flight-rated gas core engines on

the ground. If there is no hope that a gas core can be developed by

means of a ground tests, there would be little incentive to continue

gas core feasibility studies.

The following conclusions can be made as a result of this study:
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1. A logical series of experiments can be conceived to establish

feasibility gas core reactors in an orderly stepwise fashion. The

final step in such a series is the ground test of a full scale gas core

reactor.

2. It appears to be technically feasible to carry out ground tests

of full scale gas core reactors as well as the necessary intermediate

experiments prior to full scale ground tests.

3. A cold-flowing gas core mockup critical experiment that uses

uranium hexafluoride as the fuel and a gas such as nitrogen to sim-

ulate the hydrogen appears to be feasible. This experiment would

provide data on gas core dynamics and the interaction between neu-

tronics and fluid flow. It neglects the effect of power production and

temperature.

4. A nonnuclear hot-flow experiment that simulates the combined

hydrodynamic and heat-transfer characteristics within gas cores

appears to be feasible. Radiofrequency induction heating is used as

the heat source to simulate fission heating. This experiment would

provide data on the effect of the interaction of heat generation high

temperature gradients and fluid flow in gas core reactors.

5. It does not appear feasible to design a meaningful fission-

heated flowing gas experiment for neutron flux levels available in

existing test reactors.

6. It appears to be feasible to construct a test reactor that would

provide the flux level of about 101 6 neutrons per square centimeter

per second for meaningful gas core mockups of the order of 20 inches

in diameter.

7. It is concluded that a full-scale experimental gas core reactor

and flight design gas cores could be tested in facilities similar to

existing nuclear rocket test facilities. Modifications would be required

to provide a scrubber for cleaning up the exhaust gases before discharging

them to the atmosphere.
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Figure 4. -Heavy-gas distribution in curved porous-
wall apparatus at mass flow ratio of 100 to 1.
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(a) Photograph of coaxial-flow test apparatus at UARL. (b) Schematic of coaxial-flow test apparatus at UARL.

Figure 5. - Coaxial-flow test apparatus at United Aircraft Research Laboratories. Chamber diameter, D, 10 inches for all tests.
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(a) Outer- to inner-mass-flow ratio of 30 to 1 showing (b) Outer- to inner-mass-flow ratio of 55 to 1 showing
good fuel-region containment. very poor fuel-region containment.

(c) Outer- to inner-mass-flow ratio of 30 showing (d) Outer- to inner-mass-flow ratio of 80 showing
good fuel-region containment; thick porous ma- good fuel-region containment; thick porous ma-
terial across inlet face. terial across inlet face.
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(e) Outer- to inner-mass-flow ratio of 130 showing
good fuel-region containment; thick porous ma-
terial across inlet face.

Figure 6. - Coaxial-flow experiment.
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Figure 7. - One-megawatt experiment.
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Figure 8 - Concentration profiles of coaxial flow of hydrogen and argon
in radiofrequency torch.
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Figure 9. - Full-scale gas core critical experiment facility.
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Figure 10. - Steps required to demonstrate gas core reactor feasibility.
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Figure 1L - Cold-flow critical experiment
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Figure 12. - Radiofrequency plasma torch operating at 500-kilowatt plate power
with air.
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Figure 15. - Small gas core test reactor. (Dimensions are in inches.)
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